
Algorithm Portfolios through
Empirical Hardness Models

Case Studies on Combinatorial Auction
Winner Determination and Satisfiability

Kevin Leyton-Brown

University of British Columbia

Eugene Nudelman

James McFadden

Galen Andrew

Yoav Shoham

Stanford University

We’d like to acknowledge assistance from Ryan Porter, Carla Gomes and Bart Selman, and support from the Cornell
Intelligent Information Systems Institute, a Stanford Graduate Fellowship and DARPA (F30602-00-2-0598).

The Algorithm Selection Problem

• What is the best algorithm for a given problem?
– worst-/average-case measure doesn’t tell the whole story

– ideally, select algorithm on a per-instance basis [Rice]

• Our approach:
– Identify:

• a target distribution of problem instances, D

• a set of algorithms, where each algorithm has a significant probability
of outperforming the others on instances drawn from D

• polytime-computable features of problem instances

– Learn per-algorithm empirical hardness models

– Use the models to construct an algorithm portfolio by choosing the
algorithm with the best predicted runtime

Combinatorial Auction Winner Determination

• Equivalent to weighted set packing

• Input: n goods, m bids

• Objective: find revenue-maximizing non-conflicting
allocation

WDP: Runtime Variation

• Complete algorithms:

– CPLEX [ILOG Inc.]

– CASS [Leyton-Brown et.al],

– GL [Gonen and Lehman]

• Gathered runtime data using
various distributions

– randomly sampled generator’s
parameters for each instance

• Even holding problem size
constant, runtimes vary by
many orders of magnitude
across and within distributions

-1 0
1

2
3

4
5 M

atching

Paths

Scheduling

L6
L2

Regions

L4
Arbitrary

L7
L3

0%

20%

40%

60%

80%

100%

CPLEX

Running

Time

log10(sec)

Dis tribution

500 instances

in each

WDP: Features

1. Linear Programming
– L1, L2, L∞ norms of integer slack vector

2. Price
– stdev(prices)

– stdev(avg price per good)

– stdev(average price per sqrt(good))

3. Bid-Good graph
– node degree stats (max, min, avg, stdev)

4. Bid graph
– node degree stats

– edge density

– clustering coefficient (CC), stdev

– avg min path length (AMPL)

– ratio of CC to AMPL

– eccentricity stats (max, min, avg, stdev)

Bid

Bid

Bid

Bid

Good

Good

Good

Bid

Bid Bid

BidBid

WDP: Empirical Hardness Models

• Quadratic regression can be used to learn very accurate
models
– predicting log10 of CPLEX runtime

– Root mean squared error: 0.216 (test data)

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5

log(Actual Runtime)

P
re

d
ic

te
d
 l
o
g
(R

u
n
ti
m

e)

WDP: From Models to a Portfolio

0

100

200

300

400

500

600

700

800

CPLEX Portfolio Optimal

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

CASS
GL
CPLEX

Optimal Algorithm Selection Portfolio Algorithm Selection

SATZilla: A Portfolio for SAT

• Algorithms in the portfolio:
– 2clseq [Bacchus] Limmat [Biere]

– OKsolver [Kullmann] relsat [Bayardo]

– Satz-Rand [Kautz, Li] SATO [Zhang]

– zChaff [Zhang] Jerusat [Nadel]

• Satzilla2 (Hors-Concours) added:
– eqsatz [Li] HeerHugo [Groote]

– AutoWalkSat [Patterson, Kautz] (preprocessing)

• Developed in just over two weeks!

SATzilla: Features

Var

Var

Var

Clause

Clause

1. Problem Size: #vars, #clauses,
#vars/#clauses

– rest of features are normalized by these

2. Graphs:
• Variable-Clause (VCG, bipartite)

• Variable (VG, edge whenever two
variables occur in the same clause)

• Clause (CG, edge whenever two clauses
share a variable with opposite sign)

— compute stats=(max, min, stdev, mean,
entropy) over node degrees

— for VCG, both for vars and clauses

— # of unary, binary, ternary clauses

— stats of the CG clustering coefficients

Var

Var Var

VarVar

Clause Clause

Clause
Clause

SATzilla: Features

3. Stats of #positive/#negative literals in each clause

4. Stats of #positive/#negative occurrences for each var

5. Horn clauses
– total #horn clauses

– stats of #horn occurrences for each var

6. LP relaxation features
– objective value

– stats of integer slacks

– #vars set to an integer

7. Probing features
• DPLL probing features (to depth 256)

— #unit props after reaching depths 1, 4, 16, 64, 256

• Local search probing (100 probes, each probe runs to plateau/max)
— stats of climb height (in #clauses) – stats of #steps taken

— stats of fraction of satisfied clauses – stats of break counts/#vars

• Search space size probing (5000 random search paths with unit-prop)
— average depth to contradiction, estimate log-num-nodes in search tree

k1

Slide 10

k1 # pos/# neg: should be abs(0.5 - #pos / (#pos + #neg)) so that flipping all pos and neg doesn't change the stat
kevinlb, 1/1/2004

SATzilla: Models and Portfolio

• Learned linear regression models for each algorithm
– trained on more than 20000 instances

• included 2002 competition instances

• highly skewed towards random instances

– training set preprocessed to exclude instances that were solved by
all solvers, or by none of them

– terrible RMSE on test set

– enough predictive power to discriminate well

• On the training set, SATzilla’s choice takes on average
92 seconds longer to run than the optimal choice
– gives SATzilla an edge over its subsolvers, especially on harder

instances

SATzilla: SAT-2003 Competition

• 2nd in Random instances track

• 3rd in Handmade track; 2nd in Handmade track, SAT only

• Only solver with good performance in more than one track

• Success measured in #series solved, not #benchmarks solved

– Satzilla 2 solved more random instances than kcnfs

SATzilla: Areas for Improvement

• Add new algorithms to the portfolio

– SATzilla outperformed all its constituent algorithms

• Construct better models

– as we continue to study and analyze SAT data, our
model accuracy is increasing

• Spend more development time to eliminate bugs

– LP features timed out on many industrial benchmarks
• instead of using a fallback solver (zChaff), SATzilla picked one

essentially at random, but most don’t do well on industrial

– some “random” instances were solved but didn’t count!
• Relsat was chosen, and actually solved them, but it had an

output bug

Conclusions

• WDP

– models: very mature, high accuracy

– algorithms: one is dominant, limiting the size of
possible gains from a portfolio approach

• SAT

– models: more of a proof of concept, much room for
improvement. However, discrimination accuracy is
much better than prediction accuracy.

– algorithms: many are strong and correlation is fairly
low, making this an excellent domain for future study

Conclusions

Overall, our techniques provide a quick and relatively automatic
blueprint for building algorithm portfolios, suitable when there are:
– two or more algorithms with relatively uncorrelated runtimes

– a set of good features

– lots of data

	Algorithm Portfolios through Empirical Hardness ModelsCase Studies on Combinatorial Auction Winner Determination and Satis
	The Algorithm Selection Problem
	Combinatorial Auction Winner Determination
	WDP: Runtime Variation
	WDP: Features
	WDP: Empirical Hardness Models
	SATZilla: A Portfolio for SAT
	SATzilla: Features
	SATzilla: Features
	SATzilla: Models and Portfolio
	SATzilla: SAT-2003 Competition
	SATzilla: Areas for Improvement
	Conclusions
	Conclusions

